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A heuristic for nesting problems of irregular shapes

Wen-Chen Leea,∗, Heng Mab, Bor-Wen Chenga

a Graduate School of Industry Engineering and Management, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
b Department of Industrial Engineering and System Management, Chung Hua University, HsinChu 300, Taiwan

Received 18 January 2007; accepted 27 February 2008

Abstract

Layout has a close relationship with product cost in the vein of how to most efficiently cut product patterns from raw materials. This is the
so-called “nesting problem”, which occurs frequently in sheet metal and furniture industries, wherein material utilization needs to be maximized.
In this paper, a quick location and movement (QLM) algorithm is proposed to solve the situation of irregular shapes nested on multiple irregular
sheets. This approach includes two major parts: it first approximates irregular shapes to a polygon with the use of a cluster of straight lines,
and second, it arranges the approximated shapes one-by-one with the proposed step-by-step rule. Finally, this study investigates and compares
examples presented by other authors. The results show that the QLM algorithm takes less time to calculate a layout and the material utilization
efficiency is higher compared to other methods.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Nesting is a classic problem of finding the most efficient
layout for cutting parts out of a given sheet with minimum
waste material. The number of applications, e.g. steel, clothing,
shipbuilding, and furniture industry is numerous. Manual
methods are used to determine the arrangement in some
industries. Operators decide the layout from their experience,
but this is not an efficient method because it is time-consuming
and the results do not efficiently utilize the raw material. It is
challenging to obtain an efficient solution in a reasonable time
when there are a large number of parts.

Nesting is an NP-hard problem and an optimal solution is
impossible to calculate in a timely manner. Hence, a result is
considered acceptable in practice if it is adequate and can be
quickly obtained. Many researchers have attempted to develop
methods or algorithms for nesting different shaped parts on
different shaped sheets.

Several researchers have attempted to develop methods for
nesting rectangular-shaped parts on rectangular sheets. Gimor
and Gomory [7] use mathematical techniques to solve this kind
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of problem. Grinde and Cavalier [10] also used mathematical
programming to contain a single polygon for solving nesting
problems. Unfortunately, mathematical programming is not
suitable in the case of many kinds of shapes. A class of
heuristics introduced by Israni and Sanders [12] has been
applied to the same problem. A genetic algorithm for placing
polygons on a rectangular board is proposed by Jakobs [13].

Adamowicz and Albano [1] and Ismail and Sanders [11]
group and cluster parts of irregular shapes to approximate
rectangular shapes. They then arrange the grouped shapes by
using rectangular nesting methods. These methodologies lower
the degree of difficulty associated with these problems, but they
also reduce the utilization of material because the approximated
rectangular shapes are larger than the original irregular ones.

Albano and Sapuppo [3] attempt to address the nesting
problem to a search-space process using heuristic methods.
Gomes and Oliveira [8] also propose a heuristic approach
that guides the search through the solution space. These
methodologies require significant time to obtain an efficient
solution. Many meta-heuristic methods have been attempted
to solve nesting problems, such as simulated annealing by
Lutfiyya et al. [15], tabu search by Bennell and Dowsland [5],
and genetic algorithms by Anand et al. [2]. Even though these
approaches can find efficient layouts, they are also similarly
time-consuming like manual solutions by human operators.
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Fig. 1. The flow of the quick location and movement approach.

Babu and Babu [17] propose an approach employing both
genetic and heuristic algorithms that aim to arrange different
rectangular parts on multiple rectangular sheets. Wu et al. [20]
also use a hybrid algorithm to solve cutting problems for two-
dimensional rectangular parts on multiple plates. Furthermore,
Lamousin et al. [14] develop the concept of no fit polygon
(NFP) for the nesting of irregular parts on irregular sheets. An
alternative approach for nesting irregular shapes proposed by
Yousef [21] is based on extracting human intuitive thoughts.
It is demonstrated that this approach yields efficient utilization
performance that compares well with results achieved by expert
human operators.

Grinde and Cavalier [9] and Nye [16] attempt to find
an optimal solution for the nesting of convex shapes. Other
researchers have also developed methods for polygon packing,
e.g. Bennell et al. [4], Dowsland et al. [6], and Tay et al. [19].
In reality, shapes may contain straight lines and curvilinear
features. Moreover, the parts may also contain internal features
that are irregular in geometry. Apart from research by Babu and
Babu [18], the above studies do not consider the situation where
parts and sheets are multiple complexes with internal features
or defective regions. Therefore, this research proposes the
heuristic algorithm, quick location and movement (QLM), to
solve nesting problems for multiple two-dimensional complex
irregular parts on multiple two-dimensional complex irregular
sheets.

2. Methodology

A quick location and movement (QLM) approach is
presented by this work to solve the situation of nesting irregular
shapes on multiple irregular sheets. The whole nesting flow is
shown in Fig. 1, and each segment is introduced below.

2.1. Transformation of irregular shapes to polygon

It is challenging to calculate the movement and overlap of
irregular shapes. Therefore, this research proposed a method
to transform irregular shapes to polygons. The transformed
polygon is slightly larger than the original irregular shape. An
irregular shape includes straight lines and curve lines. Curved
segments are presented as a set of arcs and the arcs are divided
into convex and concave shapes. Taking Fig. 2 as an example,
the curve ACB is composed of arc AC and arc BC.

O1(x01, y01): the coordinates of the circle center of arc BC
O2(x02, y02): the coordinates of the circle center of arc AC
Fig. 2. An example of transforming irregular shape to polygon.

θ1: the angle from line CO1 to line BO1
θ ′

1: the angle from line CO1 to the horizontal line passing
through O1
θ2: the angle from line CO2 to line AO2
θ ′

2: the angle from line CO2 to the horizontal line passing
through O2
d1: the longest distance from arc BD to line BD
d2: the shortest distance from point E to arc AC
R1: the radius of the circle center of arc BC
R2: the radius of the circle center of arc AC
A(xA, yA): the coordinates of point A
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If the arc is cut by n segments, every coordinate of each concave
segment is:
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Fig. 3(a). Original shape.

Fig. 3(b). Discrete with θ = 40◦.

Fig. 3(c). Discrete with θ = 20◦.
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For convenience of expression and calculation, the method
uses a fixed θ , the angle of divided segment, as the parameter to
approximate each original arc. The advantage of using a fixed
angle is that only one parameter needs to be calculated for
each arc, regardless of sheet size. Using the above equations,
an original irregular shape can be transformed to a polygon; the
more the segments, the more closely it resembles the original,
as shown in Figs. 3(a)–3(c).

Although these formulas consider shapes with line and arc
features, the discrete representation scheme adopted in this
method can quickly and easily incorporate arbitrary features for
parts and sheets.
2.2. Referral point

For the convenience of nesting, it is useful to determine
the center of the least embedding circle and the center of
gravity. An example is shown in Fig. 4. The center of the least
embedding circle is beneficial for expressing the position and
coordinates of parts. The center of gravity is used to decide the
final position of parts.

2.3. Division points of sheets

For the purpose of convenience and quick location, it is
useful to set the division points of sheets. As an example, a
rectangular sheet is displayed in Fig. 5, wherein the left most
bottom point is division point 1 and is assigned the coordinates
(0, 0). Every division point is located at a distance of D. The
point higher than the first one is division point 2. If no points
are higher than the last point of the row, the point next to the
right row is the next point and so on. The highest point in row
1 is division point 7, and division point 8 is the bottom point
in row 2. Then, the algorithm records the coordinates and the
sequence of every division points. In addition, a string of codes
are recorded to the cover conditions of the division points. If a
division point is covered with parts, it would be coded as a “1”,
otherwise, as “0”.

2.4. Flow of arrangement

Fig. 6 shows the flow of the nest rules. At first, all parts
are sorted by their area, and the largest is adopted as the first
one. They are arranged piece by piece from the largest to the
smallest, and the coordinates are recorded upon deciding the
final position of each part. The parts are arranged with the nest
rule introduced in the next section. The algorithm stops if it
cannot find a position to arrange a part. The user must decide to
choose another bigger sheet or to remove some parts, and then
try again.

2.5. Nest rules

In the nest rules, the methodology represented by this study
has two major parts. The first is how to search for a good initial
position, and the second is how to move and rotate the shape
and find the final position.

Some researchers put parts at the top-right corner to start,
but this costs time to reach a good final position. This paper
proposes a method to ascertain a good starting position without
wasting long-term movement. In the first arranged part section,
the position of division point, T1(p, p), is in its initial position
if p is closest to the radius of the embedding circle of the
part. Let the center of the embedding circle of the part move
to the coordinates, T1(p, p). It then follows the flow and rule
described in Fig. 7 to move and rotate. It records and compares
every position moved and it rewrites the record if the location
is better than the previous one. The judgment of location is
dependent on the position of the center of gravity of the part. It
is better if the position is closer to the origin of the coordinates,
(0, 0).
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Fig. 4. Referral points of a part.
Fig. 5. Division points of a sheet.

The above-mentioned rule is designed for the initial position
of the first part. The initial point selection of other parts is
different from the first one. It chooses the division point where
there are numbers of (W − 1) of the division point without
overlapping in four directions as the initial position of the next
part. The value of W is calculated using Eq. (3). All parts move,
rotate, and decide the final position in the same way. Every
division point will be attempted without overlap if none fits the
above condition.

L

D
= W +

t

D
, (W, t ∈ Z+, t < D) (3)

D = αL

d = β D

L: the diameter of the surrounding circle of the part

D: the distance of every division point

α: coefficient

β: coefficient.

2.6. Multiple irregular sheets with defective regions

The preceding section aimed to arrange irregular parts on
a rectangular sheet. In the case of an irregular sheet, it needs
to be processed before applying the aforementioned methods.
The aim here is to find the least embedding rectangle for the
irregular sheet. Using the methods outlined in Section 2.1, areas
of the rectangle outside the irregular shape are treated as shapes
Fig. 6. The flow chart of arrangement.

that have been already fitted. Similarly, any defects in the sheet
are also considered as shapes that have been already placed.
The parts then can be nested with the previously proposed
approaches above on the unoccupied regions.

In the case of multiple sheets, the sheets are sorted by
area and combined in a raw sequence to find out the least
embedding rectangle. Similarly, the extra and defective regions
are recorded and viewed as occupied parts. This method can
solve the problem of multiple irregular parts and sheets with or
without defective areas.

3. Test results

Trials were initially carried out to test the influences of the
parameters, θ, α, and β. These were executed by nesting forty
pieces of a single part on a rectangular sheet with a fixed width
and ‘infinite’ length, such as a bolt of cloth. All test runs were
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Fig. 7. The flow chart of the nest rules.
processed on a laptop computer with an Intel Pentium M pro-
cessor operating at 1.73 GHz. The compared results are dis-
played in Figs. 8–10. Fig. 8 reveals that there is no discernable
difference in utilization efficiency with the change of division
angle. An approximated polygon is closer to an original shape
when the value of θ is small. Unfortunately, this produces a
large number of points and requires significant time to calcu-
late. On the other hand, if the value of θ is large, it would make
the approximated shape too large, affecting the nesting results.
Therefore, it is better to use a division angle of 20◦.

Utilization calculation is done by using Eq. (4). The
rectangular zone is viewed as the used area of the sheet, and
the width and length are decided by the outer coordinates of all
parts.

Utilizations =

n∑
i=1

Ai

R
(4)

Ai : the area of the i part
R: the used area of the sheet.
Fig. 8. The results of nesting with different θ .

As shown in Fig. 9, utilization decreases significantly if α is
more than 0.25. Furthermore, the run time increases when α is
too small. Therefore, the range of α is best suited to be between
0.02 and 0.20.

In addition, Fig. 10 shows that utilization decreases
substantially when β is more than 1. There is no distinct
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Fig. 9. The results of nesting with different values of α.

Fig. 10. The results of nesting with different values of β.

Fig. 11. The results of nesting with different numbers of parts.

variation in run time when changing β. Hence, β is best suited
to be between 0.01 and 1.

Fig. 11 summarizes the results from other trials implemented
to test the influences when nesting different numbers of parts.
As can be seen, the results show that the run time is an
arithmetic progression and the utilizations increase with the
growth in the number of parts. This is because the approach
this research proposes is nesting piece by piece.

Fig. 12 summarizes the results from trials conducted with
a fixed sheet size. The utilization is 63.8%, the number of
arranged parts is 41, θ is 20◦, α is 0.04, and β is 0.1.

There existed no better way to measure nesting algorithms’
performance, and, so this study evaluated some examples
proposed by other researchers. A set of seven kinds of parts
were tested by Wu et al. [20]. In the present study, the
researchers scanned the parts and redrew them as shown in
Fig. 13. Small errors could potentially have been introduced
Fig. 12. The result of nesting with a single part on a fixed size of sheet.

Fig. 13. Geometries of parts considered in the test problem.

due to the scanning process. Four trials were conducted, and
the trial conditions, parameters, and subsequent results are
summarized in Table 1 and Figs. 14(a)–14(d). Wu et al. [20]
fails to mention the run time of their trials. In addition, their
utilization calculations were different from that of this study.
In this case, there were seven kinds of parts, whose shapes
were suited to the method of [20] because some part shapes
were closed rectangles and the coefficient of variation of length
was small. Figs. 14(a)–14(d) reveal that the arranged parts’
concentration using the proposed approach is greater than the
results obtained by [20]. Furthermore, the method presented
here arranges these parts without any previous orientation or
combination of parts, which contrasts with method [20].

The present study also tested a set of shapes proposed by
Yousef [21], which were scanned and redrew as shown in
Fig. 15. The results from four conducted trials are displayed
in Table 2. The results from Table 3 show that both utilization
and run time using QLM are better than those by [21]. There is
a distinct gap in run time obtained between the two algorithms.
The error from scanning can be ignored because the utilization
calculations used the areas of the redrawn shapes. Fig. 16
depicts the plot of allocation achieved by QLM.
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Table 1
The conditions and results of nesting (1)

Parts Demand information for parts in test problems
Example 1 Example 2 Example 3 Example 4

Obj1 1 1 2 2
Obj2 3 4 1 2
Obj3 5 2 4 3
Obj4 2 2 3 1
Obj5 3 3 2 4
Obj6 5 2 2 5
Obj7 5 4 4 2
# of elements 24 18 18 19
Coefficient of variation of area 0.845 0.291 0.288 0.245
Coefficient of variation of length 0.04 0.041 0.04 0.037
Plate size 205 × 110 165 × 110 225 × 80 160 × 115
θ (◦) 20 20 20 20
α 0.125 0.1 0.05 0.1
β 0.1 0.01 0.01 0.1
CPU time (s) 1.251 0.219 0.437 0.125
i
a
c
T

Fig. 14(a). Example 1 of compared results (1).

Fig. 14(b). Example 2 of compared results (1).

Babu and Babu [18] propose an example of arranging certain
artistic shapes with irregular geometry on a sheet with an
Fig. 15. Geometries of parts considered in the test problem.
Fig. 14(c). Example 3 of compared results (1).

Fig. 14(d). Example 4 of compared results (1).

rregular boundary. The present study scanned, redrew and
rranged these shapes as well. The tests were under different
omputer environments, and the results are summarized in
able 4. As shown, the shortest time is 5.578 s in trial 4. In
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Table 2
The conditions and results of nesting (2)

Parts Demand information for parts in test problems
Trial 1 Trial 2 Trial 3 Trial 4

# of elements 28 28 28 28
Plate size 15 × 26.2 15 × 26.05 15 × 25.9 15× 26.1
θ (◦) 20 20 20 20
α 0.15 0.15 0.075 0.025
β 0.05 0.01 0.01 0.01
CPU time (s) 0.422 0.391 1.125 8.64
Utilizations (%) 74.8 75.2 75.6 75.1

Table 3
The compared result (3) using different methods

Parts Demand information for parts in test problems
QLM Tabu search HBH

Plate size 15× 25.9 15× 20.096 15 × 27.12
CPU time 1.125 s 2–10 min 2–10 min
Utilizations (%) 75.6 69.1 71.2

Table 4
The conditions and compared results (4)

Parts Demand information for parts in test problems
Trial 1 Trial 2 Trial 3 Trial 4

# of elements 20 20 20 20
θ (◦) 20 20 20 20
α 0.2 0.15 0.15 0.018
β 0.1 0.1 0.05 0.05
CPU time (s) 7.671 7.547 7.969 5.578
Utilizations (%) 51.3 51.5 51.6 50.8

Fig. 16. The plot of compared results (2).

comparison, the same objects took 1230 s according to the
data in [18]. QLM run time results are much shorter than
those obtained by [18]. Unfortunately, the utilizations cannot
be compared directly because the method of calculation is
different. However, the utilization of QLM is better than that
of [18] when adopting the same equation. Figs. 17(a) and 17(b)
show the plots of two nesting results.

For the performance testing of the QLM algorithm, three
examples proposed by [20,21,18] were tested and compared.
QLM is comparable or superior to these algorithms both
in utilization and process time from the results shown in
Figs. 14(a)–14(d), 16, 17(a) and 17(b), and Tables 1–4.
Fig. 17(a). Trial 2 of compared result (3).

Fig. 17(b). Trial 3 of compared result (3).

With the exception of [18], the referred studies in Section 1
do not consider the situation where parts and sheets are
multiple complexes with internal features or defective regions.
QLM is capable of solving nesting problems for multiple
two-dimensional complex irregular parts on multiple two-
dimensional complex irregular sheets.

Finally, the nesting problem of multiple two-dimensional
complex irregular parts on multiple two-dimensional complex
irregular sheets were tested. There were four kinds of sheets
and the results are shown in Fig. 18. Fig. 18 reveals that QLM
works for this kind of complicated problem. Moreover, sheet
1 of Fig. 18 illustrates that QLM validly fills hole due to the
design of division point.

4. Conclusions

This paper proposes the algorithm, quick location and
movement (QLM), for solving irregular parts nesting on
multiple irregular sheets. This algorithm includes two major
parts: it approximates an irregular shape to a polygon with
the use of a cluster of straight lines, and it arranges the
approximated shapes one-by-one with the proposed step-by-
step rule. This algorithm has been developed using a program
using the C++ programming language. The program loads an
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Fig. 18. The plot of multiple irregular parts on multiple irregular sheets.
AutoCAD file with the format of DXF (file name.dxf), and the
results are output to a file with the same format. This software
technology is directly scalable to industrial application.

The arrangement efficiencies depend on the complexity, size
and numbers of parts and sheets. Apart from solving nesting
problems involving rectangular parts and sheets, the presented
approach can also be extended directly to the arrangement of
parts and sheets with highly irregular shapes. Inner waste filling
and multiple sheets are also considered. The design of θ, α,
and β makes it suitable for different areas and shapes of parts
and sheets, and the result can be repeated and checked step-by-
step because the results are the same whenever the parameters
are fixed. The approach presented here is applicable to any
kind of two-dimensional cutting stock problem. Although the
present method has only been applied to shapes described by
lines and arcs, the discrete representation used in this work
can easily incorporate free-form features for the sheets and
parts. In addition, the cutting tools and relevant technology
or limitations therein are not considered when developing the
approach.

The proposed approach has been compared with some
methods proposed by other researches. The results reveal that
QLM is better than other algorithms presented in the literature.
The method we propose here is valid for any set of irregular
parts and sheets, regardless of the number of pieces or piece
types. Furthermore, it is more effective and efficient when
applied for highly irregular parts and sheets.

Acknowledgements

The authors would like to express their appreciation to Dr.
Gordon Turner-Walker for his help in correcting earlier versions
of this study. They would also like to thank the anonymous
reviewers for their valuable comments and the professional
English editor for help in editing.

References

[1] Adamowicz L, Albano A. Nesting two-dimensional shapes in rectangular
modules. Computer Aided Design 1976;8:27–33.

[2] Anand S, McCord C, Sharma R. An integrated machine vision based
system for solving the non-convex cutting stock problem using genetic
algorithms. Journal of Manufacturing Systems 1999;18(6):396–415.

[3] Albano A, Sapuppo G. Optimal allocation of two-dimensional irregular
shapes using heuristic search methods. IEEE Transactions on Systems
1980;6(5):242–8.

[4] Bennell JA, Dowsland KA, Dowsland WB. The irregular cutting-stock
problem—a new procedure for deriving the no-fit polygon. Computer and
Operations Research 2001;28:271–87.

[5] Bennell JA, Dowsland KA. A tabu thresholding implementation for
the irregular stock cutting problem. International Journal of Production
Research 1999;37:4259–75.

[6] Dowsland KA, Vaid S, Dowsland WB. An algorithm for polygon
placement using a bottom-left strategy. European Journal of Operational
Research 2002;141:371–81.

[7] Gimor P, Gomory R. Multistage cutting stock problems of two and more
dimensions. Operation Research 1965;13:94–120.

[8] Gomes AM, Oliveira JF. A 2-exchange heuristic for nesting problems.
European Journal of Operational Research 2002;141:359–70.

[9] Grinde RB, Cavalier TM. A new algorithm for the minimal-area convex
enclosure problem. European Journal of Operational Research 1995;84:
522–38.

[10] Grinde RB, Cavalier TM. Containment of a single polygon using
mathematical programming. European Journal of Operational Research
1996;92:368–86.

[11] Ismail HS, Sanders JL. Two-dimensional stock problem research. Journal
of Manufacturing Systems 1982;1:169–82.

[12] Israni S, Sanders JL. Performance testing of rectangular parts nesting
heuristics. International Journal of Production Research 1985;23:437–56.

[13] Jacobs S. On genetic algorithm for the packing of polygons. European
Journal of Operational Research 1996;84:645–61.

[14] Lamousin HJ, Waggenspack WN, Dobson GT. Nesting of complex 2-D
parts within irregular boundaries. Journal of Manufacturing Science and
Engineering 1996;118:165–622.

[15] Lutfiyya H, Mcmillan B, Poshyanon DAP, Dagli C. Composite stock
cutting through simulated annealing. Mathematical Computer Modeling
1992;16:57–74.

[16] Nye TJ. Optimal nesting of irregular convex blanks in strips via an exact
algorithm. International Journal of Machine Tools and Manufacture 2001;
41:991–1002.

[17] Ramesh Babu A, Ramesh Babu N. Effective nesting of rectangular parts
in multiple rectangular sheets using genetic and heuristic algorithms.
International Journal of Production Research 1999;37(7):1625–43.

[18] Ramesh Babu A, Ramesh Babu N. A generic approach for nesting of 2-
D parts in 2-D sheets using genetic and heuristic algorithms. Computer
Aided Design 2001;33:879–91.

[19] Tay FEH, Chong TY, Lee FC. Pattern nesting on irregular-shaped
stock using genetic algorithms. Engineering Applications of Artificial
Intelligence 2002;15:551–8.

[20] Wu TH, Chen JF, Low C, Tang PT. Nesting of two-dimensional
parts in multiple plates using hybrid algorithm. International Journal of
Production Research 2003;16:3883–900.

[21] Yousef AA. Human strategies based allocation of two-dimensional
irregular shapes. Journal of Intelligent and Fuzzy Systems 2003;14:
181–90.


	A heuristic for nesting problems of irregular shapes
	Introduction
	Methodology
	Transformation of irregular shapes to polygon
	Referral point
	Division points of sheets
	Flow of arrangement
	Nest rules
	Multiple irregular sheets with defective regions

	Test results
	Conclusions
	Acknowledgements
	References


